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The Dombqoyce model is reviewed in the light of new results of Muthukumar 
and Nickel, and of DesCloizeaux. The importance of correction terms is 
emphasized and it is suggested that the summation of the two-parameter series 
for the expansion factor cd of a polymer chain provides only part of the 
description of cd for large values of the excluded volume variable z. An 
appropriate definition of z for continuum walks is suggested and bounds for the 
binary cluster integral for the freely-jointed chain are calculated. 
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1. I N T R O D U C T I O N  

It has been unders tood  since Kuhn ' s  1934 paper  (1/ that  a polymer is a 

statist ical object; the modern  no t ion  of a polymer as a critical object seems 
to have clearly emerged in the early 1950s. This is immediately apparent  
from early articles by Temperley (21 and  Fisher and  Sykes, (3) for instance, 

on the relat ionship between the polymer  exciuded-volulme problem and 
the Ising model. Much  of the relat ionship between these two problems 
had become clear by the late 1960s, (4/ before the powerful techniques of 

field theory and  the renormal iza t ion  group were applied and  before 
DeGennes  (5) has clarified the analogy between an excluded-volume 
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polymer and a magnetic syustem in 1972. DeGennes' very important article 
is often cited as the beginning of the understanding of polymers as critical 
systems. This view is somewhat unjust, since it ignores the considerable and 
valuable body of work on critical properties of self-avoiding walks, much 
of it at King's College, London, prior to the development of the 
renormalization group and the insights it brought. 

In the present article, I am primarily concerned with one important 
development of what might be termed the "King's College school," namely 
the Domb-Joyce "universal" model of an excluded-volume polymer. This 
model has had considerable success in describing the configurational 
properties of real polymers ~6'7) and has received wide acceptance from 
polymer scientists. However, recent developments seem to indicate that the 
Domb-Joyce model may not be applicable to self-avoiding walks in the 
continuum. If so, then this is a matter for concern. The model was 
developed within the framework of random and self-avoiding walks on 
lattices, and it very precisely describes the dimensions of such walks. (8) But 
if our understanding of a polymer as a critical object is at all correct, then 
predictions of the model cannot depend on the presence or absence of 
lattice structure, provided that the chains are sufficiently long. 

To say that the predictions of the model do not depend on the details 
of the fine structure does not mean that the fine structure can be entirely 
ignored. What it means, rather, is that variables must be defined, or units 
chosen, so that all details of fine structure are contained within these 
variables or units. The universal character of any model depends on an 
appropriate definition of the variables. 

The most important predictions of the Domb-Joyce model, as with 
other models, are expressed in terms of the familiar two-parameter variable 
z, where z has the form 

z = const x N1/2v 

Here N is the number of bonds (steps) in the chain and v is a measure of 
the strength of the excluded-volume condition. The precise definition of the 
constant requires some care, since it is this constant which incorporates all 
the lattice or model dependence. I shall show that the apparent difficulties 
with the Domb-Joyce model may be explained in terms of corrections to 
the two-parameter approximation. 

2. THE T W O - P A R A M E T E R  M O D E L  

The expansion factor of a self-avoiding walk is defined to be 

a2= ( R2N)/N 
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where <R<> is the mean square end-to-end length of the walk. It is by now 
very well known (9) that for sufficiently long walks and a sufficiently weak 
excluded-volume interaction, ~2 may be expressed as a perturbation series 
in z, that is, 

~(2 1 + ~z+ ..- 

On the basis of the series and a famous formula due t o  Flory, (~~ it has 
long been postulated that for sufficiently long chains, (3( 2 is a function of z 
only, even for large z. This is the two-parameter  hypothesis. The hypothesis 
received strong support from the work of Domb, (11) who showed that for 
self-avoiding walks on a variety of lattices, the mean square end-to-end 
length behaves as 

0~2 ~ Az2V I, z -+ oO 

with 2v ~ 1.2 and A ~ 1.64. All lattice dependence is included in the variable 
z. This asymptotic behavior has been confirmed by more recent work based 
on the renormalization group and field-theoretic techniques. A number of 
these calculations have provided the most precise estimate available of the 
exponent, although the exact value of, the prefactor remains a matter for 
discussion. 

The Domb-Joyce model ~12 ~5) is based upon weighted overlap walks 
on lattices. A statistical weight 1 -  w is assigned to each intersection of a 
random lattice walk with itself; the appropriate definition of z for the 
model is 

z = (3/2rc)3/2N1/2flw 

The passage from a random to a self-avoiding walk is achieved by varying 
w from 0 to 1. Here fl represents the volume per lattice site, and this is 
f i x ed ,  regardless of the value of w. 

It is now possible to perform a rigorous, convergent, expansion of e2 
in powers of w, for any finite N: 

c~2(w) = 1 + k l w + k z w 2 +  . . .  

where 

k r = a o N r / 2 + a l N  (r l ) /2 -q-a2N(r-2) /2  j -  . . .  

If N is sufficiently large, then only the leading term in each coefficient is 
retained, and we recover the usual two-parameter series. This series is 
asymptotic. (16) 
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Alternatively, we may write ~Z 2 a s  a series in N 1/2 whose coefficients are 
functions of w: 

a2(N) = 1 + l l N  1/2 + 12N + . . .  

where 

lr=bowr +blw r+l +b2wr+2 + ... 

If w is sufficiently small, then only the leading term in each coefficient is 
retained, and again we recover the usual two-parameter series. But for a 
fully self-avoiding walk, that is, for w = 1, it is clear that the expansion 
factor is not defined by the two-parameter series; there are important 
correction terms which must be taken into account. 

The region of large excluded volume is studied by analysis of 
numerical results for weighted overlap lattice walks (15) for 0.5 ~< w ~< 1. The 
results have been summarized as 

~2(z)~1.64z~ w > 0.5, Nlarge (1) 

This relationship should be regarded as a good approximation, rather than 
rigorous. Nonetheless, it appears that a two-parameter principle applies for 
weighted-overlap walks on lattices. 

Correction terms are important in the large excluded-volume regime 
as well. If CN represents the number of N-step self-avoiding walks, then it 
is possible to define a generating function 

P(x) = ~ CN XN 
N = 0  

which is known to have the dominant singular behavior 

P(x )  ~ (1 - # x ) - ~ - i  (2) 

The coefficient of X N in (2) is proportional to 

F ( g +  1) 1 + ~ + ~ - ~ +  ... 

The terms in [ . . . ]  are Darboux corrections, (iv) and must be accounted for 
if numerical data are to be correctly analyzed. In addition, there are correc- 
tions due to subdominant singularities, and it is now generally agreed that 
the most important of these is proportional to N 4, where A is close to 1/2. 
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The Domb-Joyce model thus extends the two-parameter series to 
lattices and provides for the inclusion of large-excluded-volume behavior as 
exemplified by self-avoiding walks. It also provides for the computation of 
corrections to the two-parameter predictions. The "universal" hypothesis is 
that, for sufficiently long chains, the expansion factor may be described by 
a single function of z which provides for "crossover" from the random 
to the self-avoiding walk. The two-parameter components of the D o m b -  
Joyce construction are summarized in the Domb-Barre t t  interpolation 
formula, (13~ which is designed to have the correct small-z expansion as well 
as the appropriate large-z behavior: 

O~ 2 =  (1 -4-6.67z + 12.57z2) ~ (3) 

This equation is not complete unless a recipe for the calculation of z is 
given. For  lattice walks, this is a trivial task;/3 is the volume per lattice site. 
For  self-avoiding walks in the continuum it is a more subtle problem. (18) 
First of all, we must define what we mean by such a walk. For  the purposes 
of this article, we take a self-avoiding walk in the continuum to be the 
bond set of a freely-jointed chain. We expect that the characteristics of 
these walks will depend on the bead diameter. If, for any bead diameter, we 
imagine a random network such that a self-avoiding walk on the network 
is indistinguishable from a walk in space, then we may equate the excluded 
volume of the latter with the volume per site of the former. 

A convenient way of expressing the factor fl for any walk (which might 
or might not be on a lattice) is as 

fl=KVo 

where Vo represents the volume of a bead of the chain. For  a lattice walk 
to nearest neighbors, the bead diameter is always equal to the lattice 
spacing. Thus, for a simple cubic lattice, K represents the ratio of the 
volume of a unit cube to that of a sphere of diameter 1, that is, 
K = 6 / g =  1.91. The value of K for a continuum walk is less easily 
computed; however, it is a simple matter to establish bounds for the special 
case of a bead whose diameter is equal to the bond length. The binary 
cluster integral for a dilute hard sphere gas in 8Vo. This represents the 
volume of a sphere with radius equal to the bead diameter, which is 
excluded to the center of any other bead. If the probability of this excluding 
volume being shared with another bead is vanishingly small, it may all be 
associated with a simple bead. However, if the diameter of the bead is equal 
to the bond length (see Fig. 1), then there must be a minimum of two 
adjacent beads to share the excluding volume. As only (approximately) half 
of each of these beads is contained within the volume, the excluded volume 
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Fig. 1. (a) Binary cluster integral for a freely-joined chain with small excluded volume. 
(b) Approximate binary cluster integral for a freely-jointed chain with large excluded volume. 

which may be associated with the bead under consideration cannot be 
greater than 

8 V o 
1 + 2 x 0.406 - 4"414 V~ 

In order to compute a lower bound for K, assume that the random 
network is as dense as possible and that the vertices represent the sphere 
centers of a random, close-packed, hard-sphere fluid. The density of such 
a fluid is known (ag) to be 0.637. Since K is the reciprocal of this value, we 
have 

1.57 < K <  4.414 

The two-parameter perturbation series has recently been extended to 
six terms by Muthukumar and Nickel, (2~ who have summed the series 
to obtain an asymptotic expression for the expansion factor. DesCloizeaux 
et aL (22) have obtained a similar result using a direct renormalization 
method: 

(X 2 ~ 1:53z~ + 0 . 1 2 z  0.93 ~_ . . . )  (4) 
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The perturbation series may be combined with the large-excluded-volume 
behavior in an approximate interpolation formula as was done for the 
Domb Barrett equation: 

~2 = (1 + 7.524z + 11.06Z2) ~ (5) 

It is important to remember that these calculations are within the two- 
parameter framework. The correction term in (4) arises from the sub- 
dominant singularity in the summation of the two-parameter series. The 
other corrections discussed above have not been included. 

As with Eq. (3), Eq. (5) requires a definition for z. The correct choice 
is that commonly used for continuum chains(9): 

z = (3 /2~)3/2N1/2 f l  (6) 

where/~ is the binary cluster integral. For a freely-jointed chain with small 
beads, the appropriate value is that of a dilute hard sphere gas, i.e., 8 Vo. 
One would not, however, expect this value of/3 to be appropriate for a 
freely-jointed chain with large excluded volume, since under these 
circumstances the binary cluster integral should be reduced due to sharing 
as discussed in the previous section. 

The Muthukumar-Nickel result, which is undoubtedly a correct sum- 
mation of the two-parameter series, predicts 

(x 2 ~ 1-.53z 0354 (7) 

which is distinctly not in agreement with the Domb-Barrett  prediction (1); 
any attempt to improve the value of the exponent in (1) will tend to 
exacerbate the disagreement in the prefactors. It is nonetheless important 
to refine the Domb-Barrett  equation in the light of the most recent infor- 
mation. This project, which is underway and will be reported more fully 
elsewhere, involves a careful analysis of the available data on self-avoiding 
and weighted-overlap walks using the now precisely known value of the 
exponent, as well as the new information about corrections. However, a 
preliminary and crude assessment suggests that (1) should be replaced by 

~ : ~  1.75Z ~ (8) 

It is emphasized that the value of 1.75 is a p p r o x i m a t e ,  but it is clear that 
there is a major disagreement between (7) and (8). I suggest that the 
disgreement is due to the correction terms which are not included in the 
Muthukumar-Nickel calculation. 

The very fact that the amplitude determined for self-avoiding walks on 
lattices (1) differs significantly from that obtained by summing the two- 
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parameter series indicates strongly that correction terms become very 
important in the large-excluded-volume regime, at least for lattice walks. It 
may be that, to some extent, the reduction in z is offset by the corrections 
to the two-parameter expression which become important as we move from 
the small-excluded-volume regime to the large-excluded-volume regime. 

We note that the distinction between (3) and an amended equation is 
not likely to be significant for the molecular weights used presently in 
experiment. 

3. C O N C L U S I O N S  

The recent extension of the two-parameter series and the summation 
of that series is a wonderful achievement, which must be seen as a 
significant advance in the understanding of polymer excluded volume. It 
was initially somewhat distressing to see that the result is in clear dis- 
agreement with the well-established universal formula based on the Domb 
Joyce model. The inevitable conclusion is that the Muthukumar Nickel 
equation (5) does not work for lattices. Why not? The most likely answer 
is to be found in consideration of the lattice data on which the asymptotic 
expression (1) is based. The numerical evidence suggests that a two- 
parameter principle applies, but the results are mildly lattice dependent and 
the computed amplitude is different from that predicted by summation of 
the two-parameter series. I suggest that this difference is due to the 
presence of important correction terms which are known to exist and which 
are known to be model dependent. It would be interesting to apply the 
Borel summation of Muthukumar and Nickel or the direct renormalization 
of DesCloizeaux to the series formed by the leading corrections to the two- 
parameter series coefficients, to see their significance for the freely-jointed 
chain and for some lattices. 

The definition of z for continuum walks with appreciable excluded 
volume must still be addressed. I have suggested in this article how such a 
definition might be made, but much work remains to done. It would be 
interesting to consider ways, either analytical or numerical, in which the 
constant K, defined by / /=  KVo, might be determined as a function of the 
bead diameter of a freely-jointed chain. To my knowledge, there has been 
no investigation whatsoever of self-avoiding walks on random networks, 
and this might prove a fruitful area for investigation. 

Preliminary analysis of Monte Carlo data for the freely-jointed chain 
(M. Mansfield, private communication) indicates that correction terms 
which should be important for a freely-jointed chain do not appear to be 
so if z is defined as for a system of isolated hard spheres. This suggests that, 
for such chains, the effect of corrections is largely offset by the reduction in 
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z which takes place as the bead diameter increases with respect to the bond 
length. If we assume on the basis of the Mansfield results that (5) describes 
the dimensions of freely-jointed chains, then we find K =  3.8 for the special 
case of bead diameter equal to the bond length. This means that a given 
bead must share its excluding volume with the equivalent of approximately 
three other beads. This question is under further study, and the results will 
also be reported in the course. 

The question of whether the Domb-Bar re t t  formula is more or less 
appropriate than the Muthukumar  Nickel formula is a difficult matter  
because z cannot be directly determined from experiment. In many 
instances, z is determined by inverting a relation such as (3). Under these 
circumstances, experimental measurement of ~2 as a function of z is a 
robust procedure to say the least, and unless extreme care is taken, either 

interpolating function will produce satisfactory agreement. A more practi- 
cal approach is to measure quantities such as the penetration function 

2 Formulas as a function of the expansion factor of the radius of gyration c~ s. 
for such ratios, based on the D o m b ~ o y c e  model, have been proposed. ~23) 
However, it must be borne in mind that the Domb-Joyce  definition of z 
differs from that used by Muthukumar  and Nickel only by a multiplicative 
factor, which can be expected to cancel in dimensionless ratios such as 
for large z. Moreover, both the Domb-Bar re t t  and Muthukumar-Nickel  
equations yield identical results for small z. It seems probable, therefore, 
that the choice of equation may remain a philosophical question, or even 
a matter  of personal preference as far as a particular experimenter is 
concerned. Nevertheless, ! would suggest that a formula based on the 
Domb-Joyce  approach incorporates corrections not found in the summa- 
tion of the two-parameter  series, and is therefore better designed to give 
correct and consistent results over the entire range of z. 
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